
MATH2050C Assignment 12

Deadline: April 16, 2024.

Hand in: 5.4 no. 3, 4, 7; 5.5 no 3.

Section 5.4 no. 3, 4, 6, 7, 8, 10, 15. Section 5.6 no 3,4.

Supplementary Problems

1. Let function f on E satisfy the condition: There is some constant C and α > 0 such that
|f(x) − f(x0)| ≤ C|x − x0|α for all x, x0 ∈ E. (It is called Lipschitz continuous when
α = 1.) Show that f is uniformly continuous on E.

2. Let f be a uniformly continuous function on [0,∞). Show that there is a constant C such
that |f(x)| ≤ C(1 + x).

3. (Optional) Order the rational numbers in (0, 1) into a sequence {xk}. Define a function
on (0, 1) by ϕ(x) =

∑
1/2k where the summation is over all indices k such that xk < x.

Show that

(a) ϕ is strictly increasing and limx→1− ϕ(x) = 1.

(b) ϕ is discontinuous at each xk.

(c) ϕ is continuous at each irrational number in (0, 1).

See next page
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Uniform Continuity and Oscillation of Functions

Let f be continuous on some nonempty set E in R. When f is continuous at some x0 ∈ E, it
means for each ε > 0, there is some δ such that |f(x) − f(x0)| < ε for all x ∈ E, |x − x0| < ε.
Here δ in general depending on x0 and ε. Now, f is said to be uniformly continuous on E if for
each ε > 0, there is a δ such that |f(x) − f(y)| < ε for all x, y ∈ E, |x − y| < δ. If we fix y,
we immediately see that f is continuous at y. Hence a uniformly continuous function on E is
continuous on E, but the converse is not always true. The function 1/x, sin 1/x are continuous
but not uniformly continuous on (0, 1].

Theorem 1 A uniformly continuous function on a bounded set is bounded.

This theorem holds in all dimensions.

Proof Let f be uniformly continuous on the bounded set E. Fix [a, b] so that E ⊂ [a, b]. Tak-
ing ε = 1, there is δ such that |f(x) − f(y)| < 1 whenever x, y ∈ E, |x − y| < δ. We chop up
[a, b] into finitely many subintervals of length δ/2 and tag them Ij ’s, j = 1, · · · , N . For those
subintervals satisfying Ij ∩E 6= φ, pick a point xj . Then for other x ∈ Ij ∩E, |x−xj | ≤ δ/2 < δ,
|f(x)−f(xj)| < 1, or |f(x) ≤ |f(xj)|+1. It follows that |f(x)| ≤ maxj{|f(xj)+1} for all x ∈ E.

Theorem 2 Every continuous function on [a, b] is uniformly continuous.

We refer to the textbook for a proof. Note that the same proof works for all dimensions where
the theorem states as, every continuous function on a closed, bounded set in Rn is uniformly
continuous.

Example 1 The function 1/xt, t > 0, is unbounded on (0, 1]. Hence by Theorem 1 it cannot
be uniformly continuous on (0, 1]. However, by Theorem 2 it is uniformly continuous on [a, 1]
for any a > 0.

Let E be a nonempty set in R and f a bounded function on E. The oscillation of f over E is
defined to be

oscEf = sup
E
f − inf

E
f = sup

x,y∈E
|f(x)− f(y)|.

Theorem 3 A bounded function f is uniformly continuous on a set E if and only if, given
ε > 0, there is some δ such that on every (open or closed) interval I of length δ, oscI∩Ef ≤ ε.

Proof When f is uniformly continuous, for each ε > 0, there is some δ such that |f(x)−f(y)| <
ε, x, y ∈ E, |x−y| < δ. Hence when x, y ∈ I∩E where the open interval I has length δ, |x−y| < δ
and |f(x)− f(y)| < ε. Hence, taking sup over all x, y ∈ I ∩ E, we conclude oscI∩Ef ≤ ε. Con-
versely, taking ε/2 > 0, there is some δ such that oscI∩Ef ≤ ε/2 whenever I if of length
δ. When x, y satisfy |x − y| < δ, we can find such an interval I containing x, y. Therefore,
|f(x)− f(y)| ≤ oscI∩Ef ≤ ε/2 < ε.

Example 2 The function sin 1/x is not uniformly continuous on (0, 1]. Why? Let look at the
subinterval I = (0, δ). No matter how small δ > 0 is, oscIf = 2. By Theorem 3 (taking ε < 2)
it cannot be uniformly continuous.
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Example 3 The function f(x) = x2 is not uniformly on [0,∞). Let us look at a subinterval of
the form I = (x0, x0 + δ). Since this function is increasing oscIf = (x0 + δ)2 − x20 = 2δx0 + 4δ2

which tends to infinity as x0 →∞. By Theorem 3, it cannot be uniformly continuous on [0,∞).

Monotone Functions

A function is increasing (resp. decreasing ) on an interval I if f(x) ≤ f(y) (resp. f(x) ≥ f(y))
whenever x < y in I. It is strictly increasing(resp. strictly decreasing) if f(x) < f(y) (resp.
f(x) > f(y)) whenever x < y in I. It is clear that f is increasing (resp. strictly increasing) if
and only if −f is decreasing (resp. strictly decreasing).

Theorem 4 Let f be monotone on the interval I and c an interior point of I. Then the right
and left limits always exist at c.

See textbook for a proof. Consequently a monotone function is continuous at c if and only if
limx→c− f = limx→c+ f . (Since f is monotone, f(c) is pinched between the two one-sided limits.
Hence f(c) = limx→c− f .) If f is defined at the left endpoint a, then limx→a+ f exists and f
is continuous at a if and only if limx→a+ f = f(a). A similar situation holds at the right endpoint.

Theorem 5 The discontinuity set of a monotone function is countable.

Proof Let’s us assume f is increasing on [a, b]. For c ∈ (a, b), define the jump of f at c to
be jf (c) = limx→c+ f − limx→c− f . Then jf (c) > 0 iff c is a point of discontinuity of f . Let
D be the set of discontinuity of f in (a, b). We have the decomposition D =

⋃
kDk where

Dk = {x ∈ (a, b) : jf (x) ≥ 1/k}. We claim: Each Dk contains not more than k(f(b) − f(a))
many points. Since the countable union of a finite set is countable, D is countable.

Let c1 > c2 > · · · > cN be points in (a, b). In the following we take N = 2 for simplicity. We
have

f(b)− f(a) = f(b)− lim
x→c+1

f + lim
x→c+1

f − lim
x→c−1

f + lim
x→c−1

f − f(a)

= f(b)− lim
x→c+1

f + jf (c1) + lim
x→c−1

f − f(a)

= (f(b)− lim
x→c+1

f) + jf (c1) + ( lim
x→c−1

f − lim
x→c+2

f) + jf (c2) + ( lim
x→c−2

f − f(a))

≥ jf (c1) + jf (c2) ,

since the three terms in brackets are non-negative. In general, we have

f(b)− f(a) ≥
N∑
i=1

jf (ci) .

Now, if we have N many points in Dk, f(b) − f(a) ≥
∑N

i=1 jf (ci) ≥
∑N

i=1 1/k = N/k, hence
N ≤ k(f(b)− f(a)).

The discontinuity set of f on [a, b] is D and possibly including the endpoints, so it is countable.
Now, if f is defined on (a, b). Observing (a, b) =

⋃
j [a + 1/j, b − 1/j], its discontinuity set in

(a, b) is also countable since the discontinuity set restricted to each [a+1/j, b−1/j] is countable.


