## MATH2050C Assignment 12

Deadline: April 16, 2024.
Hand in: 5.4 no. $3,4,7 ; 5.5$ no 3.
Section 5.4 no. $3,4,6,7,8,10,15$. Section 5.6 no 3,4.

## Supplementary Problems

1. Let function $f$ on $E$ satisfy the condition: There is some constant $C$ and $\alpha>0$ such that $\left|f(x)-f\left(x_{0}\right)\right| \leq C\left|x-x_{0}\right|^{\alpha}$ for all $x, x_{0} \in E$. (It is called Lipschitz continuous when $\alpha=1$.) Show that $f$ is uniformly continuous on $E$.
2. Let $f$ be a uniformly continuous function on $[0, \infty)$. Show that there is a constant $C$ such that $|f(x)| \leq C(1+x)$.
3. (Optional) Order the rational numbers in $(0,1)$ into a sequence $\left\{x_{k}\right\}$. Define a function on $(0,1)$ by $\varphi(x)=\sum 1 / 2^{k}$ where the summation is over all indices $k$ such that $x_{k}<x$. Show that
(a) $\varphi$ is strictly increasing and $\lim _{x \rightarrow 1^{-}} \varphi(x)=1$.
(b) $\varphi$ is discontinuous at each $x_{k}$.
(c) $\varphi$ is continuous at each irrational number in $(0,1)$.

## See next page

## Uniform Continuity and Oscillation of Functions

Let $f$ be continuous on some nonempty set $E$ in $\mathbb{R}$. When $f$ is continuous at some $x_{0} \in E$, it means for each $\varepsilon>0$, there is some $\delta$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ for all $x \in E,\left|x-x_{0}\right|<\varepsilon$. Here $\delta$ in general depending on $x_{0}$ and $\varepsilon$. Now, f is said to be uniformly continuous on $E$ if for each $\varepsilon>0$, there is a $\delta$ such that $|f(x)-f(y)|<\varepsilon$ for all $x, y \in E,|x-y|<\delta$. If we fix $y$, we immediately see that $f$ is continuous at $y$. Hence a uniformly continuous function on $E$ is continuous on $E$, but the converse is not always true. The function $1 / x, \sin 1 / x$ are continuous but not uniformly continuous on $(0,1]$.

Theorem 1 A uniformly continuous function on a bounded set is bounded.
This theorem holds in all dimensions.

Proof Let $f$ be uniformly continuous on the bounded set $E$. Fix $[a, b]$ so that $E \subset[a, b]$. Taking $\varepsilon=1$, there is $\delta$ such that $|f(x)-f(y)|<1$ whenever $x, y \in E,|x-y|<\delta$. We chop up $[a, b]$ into finitely many subintervals of length $\delta / 2$ and tag them $I_{j}$ 's, $j=1, \cdots, N$. For those subintervals satisfying $I_{j} \cap E \neq \phi$, pick a point $x_{j}$. Then for other $x \in I_{j} \cap E,\left|x-x_{j}\right| \leq \delta / 2<\delta$, $\left|f(x)-f\left(x_{j}\right)\right|<1$, or $\left|f(x) \leq\left|f\left(x_{j}\right)\right|+1\right.$. It follows that $| f(x) \mid \leq \max _{j}\left\{\mid f\left(x_{j}\right)+1\right\}$ for all $x \in E$.

Theorem 2 Every continuous function on $[a, b]$ is uniformly continuous.
We refer to the textbook for a proof. Note that the same proof works for all dimensions where the theorem states as, every continuous function on a closed, bounded set in $\mathbb{R}^{n}$ is uniformly continuous.

Example 1 The function $1 / x^{t}, t>0$, is unbounded on ( 0,1$]$. Hence by Theorem 1 it cannot be uniformly continuous on ( 0,1 ]. However, by Theorem 2 it is uniformly continuous on $[a, 1]$ for any $a>0$.

Let $E$ be a nonempty set in $\mathbb{R}$ and $f$ a bounded function on $E$. The oscillation of $f$ over $E$ is defined to be

$$
\operatorname{osc}_{E} f=\sup _{E} f-\inf _{E} f=\sup _{x, y \in E}|f(x)-f(y)| .
$$

Theorem 3 A bounded function $f$ is uniformly continuous on a set $E$ if and only if, given $\varepsilon>0$, there is some $\delta$ such that on every (open or closed) interval $I$ of length $\delta, \operatorname{osc}_{I \cap E} f \leq \varepsilon$.

Proof When $f$ is uniformly continuous, for each $\varepsilon>0$, there is some $\delta$ such that $|f(x)-f(y)|<$ $\varepsilon, x, y \in E,|x-y|<\delta$. Hence when $x, y \in I \cap E$ where the open interval $I$ has length $\delta,|x-y|<\delta$ and $|f(x)-f(y)|<\varepsilon$. Hence, taking sup over all $x, y \in I \cap E$, we conclude $\operatorname{osc}_{I \cap E} f \leq \varepsilon$. Conversely, taking $\varepsilon / 2>0$, there is some $\delta$ such that $\operatorname{osc}_{I \cap E} f \leq \varepsilon / 2$ whenever $I$ if of length $\delta$. When $x, y$ satisfy $|x-y|<\delta$, we can find such an interval $I$ containing $x, y$. Therefore, $|f(x)-f(y)| \leq \operatorname{osc}_{I \cap E} f \leq \varepsilon / 2<\varepsilon$.

Example 2 The function $\sin 1 / x$ is not uniformly continuous on $(0,1]$. Why? Let look at the subinterval $I=(0, \delta)$. No matter how small $\delta>0$ is, $\operatorname{osc}_{I} f=2$. By Theorem 3 (taking $\varepsilon<2$ ) it cannot be uniformly continuous.

Example 3 The function $f(x)=x^{2}$ is not uniformly on $[0, \infty)$. Let us look at a subinterval of the form $I=\left(x_{0}, x_{0}+\delta\right)$. Since this function is increasing osc ${ }_{I} f=\left(x_{0}+\delta\right)^{2}-x_{0}^{2}=2 \delta x_{0}+4 \delta^{2}$ which tends to infinity as $x_{0} \rightarrow \infty$. By Theorem 3 , it cannot be uniformly continuous on $[0, \infty)$.

## Monotone Functions

A function is increasing (resp. decreasing ) on an interval $I$ if $f(x) \leq f(y)$ (resp. $f(x) \geq f(y)$ ) whenever $x<y$ in $I$. It is strictly increasing(resp. strictly decreasing) if $f(x)<f(y)$ (resp. $f(x)>f(y))$ whenever $x<y$ in $I$. It is clear that $f$ is increasing (resp. strictly increasing) if and only if $-f$ is decreasing (resp. strictly decreasing).

Theorem 4 Let $f$ be monotone on the interval $I$ and $c$ an interior point of $I$. Then the right and left limits always exist at $c$.

See textbook for a proof. Consequently a monotone function is continuous at $c$ if and only if $\lim _{x \rightarrow c^{-}} f=\lim _{x \rightarrow c^{+}} f$. (Since $f$ is monotone, $f(c)$ is pinched between the two one-sided limits. Hence $f(c)=\lim _{x \rightarrow c^{-}} f$.) If $f$ is defined at the left endpoint $a$, then $\lim _{x \rightarrow a^{+}} f$ exists and $f$ is continuous at $a$ if and only if $\lim _{x \rightarrow a^{+}} f=f(a)$. A similar situation holds at the right endpoint.

Theorem 5 The discontinuity set of a monotone function is countable.
Proof Let's us assume $f$ is increasing on $[a, b]$. For $c \in(a, b)$, define the jump of $f$ at $c$ to be $j_{f}(c)=\lim _{x \rightarrow c^{+}} f-\lim _{x \rightarrow c^{-}} f$. Then $j_{f}(c)>0$ iff $c$ is a point of discontinuity of $f$. Let $D$ be the set of discontinuity of $f$ in $(a, b)$. We have the decomposition $D=\bigcup_{k} D_{k}$ where $D_{k}=\left\{x \in(a, b): j_{f}(x) \geq 1 / k\right\}$. We claim: Each $D_{k}$ contains not more than $k(f(b)-f(a))$ many points. Since the countable union of a finite set is countable, $D$ is countable.
Let $c_{1}>c_{2}>\cdots>c_{N}$ be points in ( $a, b$ ). In the following we take $N=2$ for simplicity. We have

$$
\begin{aligned}
f(b)-f(a) & =f(b)-\lim _{x \rightarrow c_{1}^{+}} f+\lim _{x \rightarrow c_{1}^{+}} f-\lim _{x \rightarrow c_{1}^{-}} f+\lim _{x \rightarrow c_{1}^{-}} f-f(a) \\
& =f(b)-\lim _{x \rightarrow c_{1}^{+}} f+j_{f}\left(c_{1}\right)+\lim _{x \rightarrow c_{1}^{-}} f-f(a) \\
& =\left(f(b)-\lim _{x \rightarrow c_{1}^{+}} f\right)+j_{f}\left(c_{1}\right)+\left(\lim _{x \rightarrow c_{1}^{-}} f-\lim _{x \rightarrow c_{2}^{+}} f\right)+j_{f}\left(c_{2}\right)+\left(\lim _{x \rightarrow c_{2}^{-}} f-f(a)\right) \\
& \geq j_{f}\left(c_{1}\right)+j_{f}\left(c_{2}\right),
\end{aligned}
$$

since the three terms in brackets are non-negative. In general, we have

$$
f(b)-f(a) \geq \sum_{i=1}^{N} j_{f}\left(c_{i}\right) .
$$

Now, if we have $N$ many points in $D_{k}, f(b)-f(a) \geq \sum_{i=1}^{N} j_{f}\left(c_{i}\right) \geq \sum_{i=1}^{N} 1 / k=N / k$, hence $N \leq k(f(b)-f(a))$.
The discontinuity set of $f$ on $[a, b]$ is $D$ and possibly including the endpoints, so it is countable. Now, if $f$ is defined on $(a, b)$. Observing $(a, b)=\bigcup_{j}[a+1 / j, b-1 / j]$, its discontinuity set in $(a, b)$ is also countable since the discontinuity set restricted to each $[a+1 / j, b-1 / j]$ is countable.

