MATH2050C Assignment 12
Deadline: April 16, 2024.
Hand in: 5.4 no. 3, 4, 7; 5.5 no 3.
Section 5.4 no. 3, 4, 6, 7, 8, 10, 15. Section 5.6 no 3.4.

Supplementary Problems

1. Let function f on F satisfy the condition: There is some constant C' and « > 0 such that
|f(z) — f(zo)| < Clx — xg|* for all z,29 € E. (It is called Lipschitz continuous when
a =1.) Show that f is uniformly continuous on E.

2. Let f be a uniformly continuous function on [0, c0). Show that there is a constant C' such
that |f(z)| < C(1+ z).

3. (Optional) Order the rational numbers in (0,1) into a sequence {zy}. Define a function
on (0,1) by p(z) = > 1/2F where the summation is over all indices k such that zj < x.
Show that

(a) ¢ is strictly increasing and lim,_,;- p(z) = 1.
(b) ¢ is discontinuous at each zy.

(c) ¢ is continuous at each irrational number in (0, 1).

See next page
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Uniform Continuity and Oscillation of Functions

Let f be continuous on some nonempty set £ in R. When f is continuous at some zy € F, it
means for each € > 0, there is some ¢ such that |f(x) — f(xg)| < e for all z € E, |z — z¢| < e.
Here 6 in general depending on xg and . Now, f is said to be uniformly continuous on E if for
each ¢ > 0, there is a § such that |f(z) — f(y)| < e for all z,y € E, |z —y| < J. If we fix y,
we immediately see that f is continuous at . Hence a uniformly continuous function on F is
continuous on E, but the converse is not always true. The function 1/z,sin 1/x are continuous
but not uniformly continuous on (0, 1].

Theorem 1 A uniformly continuous function on a bounded set is bounded.

This theorem holds in all dimensions.

Proof Let f be uniformly continuous on the bounded set E. Fix [a,b] so that E C [a,b]. Tak-
ing € = 1, there is 0 such that |f(z) — f(y)| < 1 whenever z,y € E,|x —y| < 6. We chop up
[a,b] into finitely many subintervals of length 6/2 and tag them I;’s, j = 1,---, N. For those
subintervals satisfying I; N E # ¢, pick a point ;. Then for other z € [; NE, |z —x;| < §/2 < 4,
|f(x)—f(z;)| <1,o0r|f(xz) < |f(z;)|+1. It follows that | f(x)| < max;{|f(z;)+1} forall x € E.

Theorem 2 Every continuous function on [a, b] is uniformly continuous.

We refer to the textbook for a proof. Note that the same proof works for all dimensions where
the theorem states as, every continuous function on a closed, bounded set in R™ is uniformly
continuous.

Example 1 The function 1/z%, ¢ > 0, is unbounded on (0, 1]. Hence by Theorem 1 it cannot
be uniformly continuous on (0, 1]. However, by Theorem 2 it is uniformly continuous on [a, 1]
for any a > 0.

Let E be a nonempty set in R and f a bounded function on E. The oscillation of f over E is
defined to be

oscnf = sup f —inf f = sup |f(z) ~ f()].
E

r,yelE

Theorem 3 A bounded function f is uniformly continuous on a set F if and only if, given
e > 0, there is some § such that on every (open or closed) interval I of length d, oscinpf < e.

Proof When f is uniformly continuous, for each € > 0, there is some ¢ such that |f(z)— f(y)| <
g,x,y € E,|xr—y| < §. Hence when z,y € INE where the open interval I has length §, |[z—y| < 0
and |f(x) — f(y)| < e. Hence, taking sup over all z,y € I N E, we conclude oscinpf < e. Con-
versely, taking £/2 > 0, there is some 0 such that oscinpf < /2 whenever I if of length
5. When z,y satisfy |z — y| < &, we can find such an interval I containing z,y. Therefore,

|f(z) — f(y)] <oscrnpf <e/2 <e.

Example 2 The function sin1/z is not uniformly continuous on (0,1]. Why? Let look at the
subinterval I = (0,d). No matter how small 6 > 0 is, osc;f = 2. By Theorem 3 (taking ¢ < 2)
it cannot be uniformly continuous.
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Example 3 The function f(z) = z? is not uniformly on [0, c0). Let us look at a subinterval of

the form I = (z¢,zo + §). Since this function is increasing oscyf = (wg + 6)? — 23 = 20z + 452
which tends to infinity as 9 — oo. By Theorem 3, it cannot be uniformly continuous on [0, 00).

Monotone Functions

A function is increasing (resp. decreasing ) on an interval I if f(x) < f(y) (resp. f(z) > f(y))
whenever x < y in I. It is strictly increasing(resp. strictly decreasing) if f(z) < f(y) (resp.
f(x) > f(y)) whenever z < y in I. It is clear that f is increasing (resp. strictly increasing) if
and only if —f is decreasing (resp. strictly decreasing).

Theorem 4 Let f be monotone on the interval I and c¢ an interior point of I. Then the right
and left limits always exist at c.

See textbook for a proof. Consequently a monotone function is continuous at ¢ if and only if
lim, .- f =lim,_,.+ f. (Since f is monotone, f(c) is pinched between the two one-sided limits.
Hence f(c¢) = lim,_,. f.) If f is defined at the left endpoint a, then lim, ,,+ f exists and f
is continuous at a if and only if lim,_,,+ f = f(a). A similar situation holds at the right endpoint.

Theorem 5 The discontinuity set of a monotone function is countable.

Proof Let’s us assume f is increasing on [a,b]. For ¢ € (a,b), define the jump of f at ¢ to
be jf(c) = lim, .+ f — lim, .~ f. Then js(c) > 0 iff ¢ is a point of discontinuity of f. Let
D be the set of discontinuity of f in (a,b). We have the decomposition D = |J, Dy where
Dy = {z € (a,b) : jy(x) > 1/k}. We claim: Each Dy contains not more than k(f(b) — f(a))
many points. Since the countable union of a finite set is countable, D is countable.

Let ¢; > ¢g > -+ > ¢y be points in (a,b). In the following we take N = 2 for simplicity. We
have

fb)—=fla) = f(b)— lim f+ lim+f— lim f+ limif—f(a)

= f(b) = tim f+jp(c) + lim f— f(a)
= (70) = Jm )+ g(en) + (lm = dim ) +jg(es) + (lim [~ f(a))

> jpler) +jple2)

since the three terms in brackets are non-negative. In general, we have
N
F®) = fla) = jple) .
i=1

Now, if we have N many points in Dy, f(b) — f(a) > S js(ci)) > SN 1/k = N/k, hence
N < k(f(b) = f(a)).

The discontinuity set of f on [a,b] is D and possibly including the endpoints, so it is countable.
Now, if f is defined on (a,b). Observing (a,b) = UJ;la + 1/j,b — 1/j], its discontinuity set in
(a,b) is also countable since the discontinuity set restricted to each [a+1/j,b—1/7] is countable.



