MATH2050C Assignment 12

Deadline: April 16, 2024. **Hand in:** 5.4 no. 3, 4, 7; 5.5 no 3.

Section 5.4 no. 3, 4, 6, 7, 8, 10, 15. Section 5.6 no 3,4.

Supplementary Problems

- 1. Let function f on E satisfy the condition: There is some constant C and $\alpha > 0$ such that $|f(x) f(x_0)| \leq C|x x_0|^{\alpha}$ for all $x, x_0 \in E$. (It is called Lipschitz continuous when $\alpha = 1$.) Show that f is uniformly continuous on E.
- 2. Let f be a uniformly continuous function on $[0, \infty)$. Show that there is a constant C such that $|f(x)| \leq C(1+x)$.
- 3. (Optional) Order the rational numbers in (0, 1) into a sequence $\{x_k\}$. Define a function on (0, 1) by $\varphi(x) = \sum 1/2^k$ where the summation is over all indices k such that $x_k < x$. Show that
 - (a) φ is strictly increasing and $\lim_{x\to 1^-} \varphi(x) = 1$.
 - (b) φ is discontinuous at each x_k .
 - (c) φ is continuous at each irrational number in (0, 1).

See next page

Uniform Continuity and Oscillation of Functions

Let f be continuous on some nonempty set E in \mathbb{R} . When f is continuous at some $x_0 \in E$, it means for each $\varepsilon > 0$, there is some δ such that $|f(x) - f(x_0)| < \varepsilon$ for all $x \in E, |x - x_0| < \varepsilon$. Here δ in general depending on x_0 and ε . Now, f is said to be *uniformly continuous* on E if for each $\varepsilon > 0$, there is a δ such that $|f(x) - f(y)| < \varepsilon$ for all $x, y \in E, |x - y| < \delta$. If we fix y, we immediately see that f is continuous at y. Hence a uniformly continuous function on E is continuous on E, but the converse is not always true. The function $1/x, \sin 1/x$ are continuous but not uniformly continuous on (0, 1].

Theorem 1 A uniformly continuous function on a bounded set is bounded.

This theorem holds in all dimensions.

Proof Let f be uniformly continuous on the bounded set E. Fix [a, b] so that $E \subset [a, b]$. Taking $\varepsilon = 1$, there is δ such that |f(x) - f(y)| < 1 whenever $x, y \in E, |x - y| < \delta$. We chop up [a, b] into finitely many subintervals of length $\delta/2$ and tag them I_j 's, $j = 1, \dots, N$. For those subintervals satisfying $I_j \cap E \neq \phi$, pick a point x_j . Then for other $x \in I_j \cap E, |x - x_j| \leq \delta/2 < \delta$, $|f(x) - f(x_j)| < 1$, or $|f(x) \leq |f(x_j)| + 1$. It follows that $|f(x)| \leq \max_j \{|f(x_j) + 1\}$ for all $x \in E$.

Theorem 2 Every continuous function on [a, b] is uniformly continuous.

We refer to the textbook for a proof. Note that the same proof works for all dimensions where the theorem states as, every continuous function on a closed, bounded set in \mathbb{R}^n is uniformly continuous.

Example 1 The function $1/x^t$, t > 0, is unbounded on (0, 1]. Hence by Theorem 1 it cannot be uniformly continuous on (0, 1]. However, by Theorem 2 it is uniformly continuous on [a, 1] for any a > 0.

Let E be a nonempty set in \mathbb{R} and f a bounded function on E. The oscillation of f over E is defined to be

$$\operatorname{osc}_{E} f = \sup_{E} f - \inf_{E} f = \sup_{x,y \in E} |f(x) - f(y)|.$$

Theorem 3 A bounded function f is uniformly continuous on a set E if and only if, given $\varepsilon > 0$, there is some δ such that on every (open or closed) interval I of length δ , $\operatorname{osc}_{I \cap E} f \leq \varepsilon$.

Proof When f is uniformly continuous, for each $\varepsilon > 0$, there is some δ such that $|f(x) - f(y)| < \varepsilon$, $x, y \in E, |x-y| < \delta$. Hence when $x, y \in I \cap E$ where the open interval I has length $\delta, |x-y| < \delta$ and $|f(x) - f(y)| < \varepsilon$. Hence, taking sup over all $x, y \in I \cap E$, we conclude $\operatorname{osc}_{I \cap E} f \leq \varepsilon$. Conversely, taking $\varepsilon/2 > 0$, there is some δ such that $\operatorname{osc}_{I \cap E} f \leq \varepsilon/2$ whenever I if of length δ . When x, y satisfy $|x - y| < \delta$, we can find such an interval I containing x, y. Therefore, $|f(x) - f(y)| \leq \operatorname{osc}_{I \cap E} f \leq \varepsilon/2 < \varepsilon$.

Example 2 The function $\sin 1/x$ is not uniformly continuous on (0, 1]. Why? Let look at the subinterval $I = (0, \delta)$. No matter how small $\delta > 0$ is, $\operatorname{osc}_I f = 2$. By Theorem 3 (taking $\varepsilon < 2$) it cannot be uniformly continuous.

Example 3 The function $f(x) = x^2$ is not uniformly on $[0, \infty)$. Let us look at a subinterval of the form $I = (x_0, x_0 + \delta)$. Since this function is increasing $\operatorname{osc}_I f = (x_0 + \delta)^2 - x_0^2 = 2\delta x_0 + 4\delta^2$ which tends to infinity as $x_0 \to \infty$. By Theorem 3, it cannot be uniformly continuous on $[0, \infty)$.

Monotone Functions

A function is increasing (resp. decreasing) on an interval I if $f(x) \leq f(y)$ (resp. $f(x) \geq f(y)$) whenever x < y in I. It is strictly increasing(resp. strictly decreasing) if f(x) < f(y) (resp. f(x) > f(y)) whenever x < y in I. It is clear that f is increasing (resp. strictly increasing) if and only if -f is decreasing (resp. strictly decreasing).

Theorem 4 Let f be monotone on the interval I and c an interior point of I. Then the right and left limits always exist at c.

See textbook for a proof. Consequently a monotone function is continuous at c if and only if $\lim_{x\to c^-} f = \lim_{x\to c^+} f$. (Since f is monotone, f(c) is pinched between the two one-sided limits. Hence $f(c) = \lim_{x\to c^-} f$.) If f is defined at the left endpoint a, then $\lim_{x\to a^+} f$ exists and f is continuous at a if and only if $\lim_{x\to a^+} f = f(a)$. A similar situation holds at the right endpoint.

Theorem 5 The discontinuity set of a monotone function is countable.

Proof Let's us assume f is increasing on [a, b]. For $c \in (a, b)$, define the jump of f at c to be $j_f(c) = \lim_{x \to c^+} f - \lim_{x \to c^-} f$. Then $j_f(c) > 0$ iff c is a point of discontinuity of f. Let D be the set of discontinuity of f in (a, b). We have the decomposition $D = \bigcup_k D_k$ where $D_k = \{x \in (a, b) : j_f(x) \ge 1/k\}$. We claim: Each D_k contains not more than k(f(b) - f(a)) many points. Since the countable union of a finite set is countable, D is countable.

Let $c_1 > c_2 > \cdots > c_N$ be points in (a, b). In the following we take N = 2 for simplicity. We have

$$\begin{aligned} f(b) - f(a) &= f(b) - \lim_{x \to c_1^+} f + \lim_{x \to c_1^+} f - \lim_{x \to c_1^-} f + \lim_{x \to c_1^-} f - f(a) \\ &= f(b) - \lim_{x \to c_1^+} f + j_f(c_1) + \lim_{x \to c_1^-} f - f(a) \\ &= (f(b) - \lim_{x \to c_1^+} f) + j_f(c_1) + (\lim_{x \to c_1^-} f - \lim_{x \to c_2^+} f) + j_f(c_2) + (\lim_{x \to c_2^-} f - f(a)) \\ &\geq j_f(c_1) + j_f(c_2) , \end{aligned}$$

since the three terms in brackets are non-negative. In general, we have

$$f(b) - f(a) \ge \sum_{i=1}^{N} j_f(c_i) \; .$$

Now, if we have N many points in D_k , $f(b) - f(a) \ge \sum_{i=1}^N j_f(c_i) \ge \sum_{i=1}^N 1/k = N/k$, hence $N \le k(f(b) - f(a))$.

The discontinuity set of f on [a, b] is D and possibly including the endpoints, so it is countable. Now, if f is defined on (a, b). Observing $(a, b) = \bigcup_j [a + 1/j, b - 1/j]$, its discontinuity set in (a, b) is also countable since the discontinuity set restricted to each [a+1/j, b-1/j] is countable.